对于malloc,以前只知道如何用,却不知道它的内部实现原理。这次特意学习了一下,做个记录。下面分析均是基于linux环境下的malloc实现。先总结结论,再逐步展开。
结论
1)当开辟的空间小于128K时,调用brk()函数,malloc的底层实现是系统调用函数brk(),其主要移动指针_edata(这里的_edata指的是Linux地址空间中堆段的末尾地址,不是数据段的末尾地址)
2)当开辟的空间大于128K时,mmap()系统调用函数会在虚拟地址空间中(堆和栈中间,称为“文件映射区域”的地方)找一块空间来开辟。
使用场景
当一个进程发生缺页中断的时候,进程会陷入核心态,执行以下操作:
1)检查要访问的虚拟地址是否合法
2)查找/分配一个物理页
3)填充物理页内容(读取磁盘,或者直接置0,或者什么都不做)
4)建立映射关系(虚拟地址到物理地址的映射关系)
5)重复执行发生缺页中断的那条指令
内存分配的原理
从操作系统角度看,进程分配内存有两种方式,分别由两个系统调用完成:brk 和 mmap (不考虑共享内存)
1)brk是将数据段(.data)的最高地址指针_edata往高地址推
2)mmap是在进程的虚拟地址空间中(堆和栈中间,称为“文件映射区域”的地方)找一块空闲的虚拟内存。
这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。
具体分配过程
情况一:malloc小于128K的内存,使用brk分配
将_edata往高地址推(只分配虚拟空间,不对应物理内存(因此没有初始化),第一次读/写数据时,引起内核缺页中断,内核才分配对应的物理内存,然后虚拟地址空间建立映射关系),如下图:
1、进程启动的时候,其(虚拟)内存空间的初始布局如图1所示。
2、进程调用A=malloc(30K)以后,内存空间如图2。
malloc函数会调用brk系统调用,将_edata指针往高地址推30K,就完成虚拟内存分配,要注意:_edata+30K只是完成虚拟地址的分配,A这块内存现在还是没有物理页与之对应的,等到进程第一次读写A这块内存的时候,发生缺页中断,这个时候,内核才分配A这块内存对应的物理页。也就是说,如果用malloc分配了A这块内容,然后从来不访问它,那么,A对应的物理页是不会被分配的。
3、进程调用B=malloc(40K)以后,内存空间如图3。
情况二:malloc大于128K的内存,使用mmap分配(munmap释放)
4、进程调用C=malloc(200K)以后,内存空间如图4。
默认情况下,malloc函数分配内存,如果请求内存大于128K(可由M_MMAP_THRESHOLD选项调节),那就不是去推_edata指针了,而是利用mmap系统调用,从堆和栈的中间分配一块虚拟内存,这样做主要是因为:brk分配的内存需要等到高地址内存释放以后才能释放(例如,在B释放之前,A是不可能释放的,因为只有一个_edata 指针,这就是内存碎片产生的原因),而mmap分配的内存可以单独释放。
5、进程调用D=malloc(100K)以后,内存空间如图5。
6、进程调用free(C)以后,C对应的虚拟内存和物理内存一起释放。
7、进程调用free(B)以后,如图7所示。
B对应的虚拟内存和物理内存都没有释放,因为只有一个_edata指针,如果往回推,那么D这块内存怎么办呢?当然,B这块内存,是可以重用的,如果这个时候再来一个40K的请求,那么malloc很可能就把B这块内存返回回去了。
8、进程调用free(D)以后,如图8所示B和D连接起来,变成一块140K的空闲内存。
9,默认情况下,当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩,变成图9所示。